

Development of a Highly Selective EP2-receptor Agonist. Part 2: Identification of 16-Hydroxy-17,17-trimethylene 9β-chloro PGF Derivatives

Kousuke Tani,* Atsushi Naganawa, Akiharu Ishida, Hiromu Egashira, Kenji Sagawa, Hiroyuki Harada, Mikio Ogawa, Takayuki Maruyama, Shuichi Ohuchida, Hisao Nakai, Kigen Kondo and Masaaki Toda

Minase Research Institute, Ono Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka 618-8585, Japan

Received 7 August 2001; accepted 17 October 2001

Abstract—Further chemical modification of 1a and 2 was undertaken to identify a more chemically stable selective EP2-receptor agonist for development as a clinical candidate. 9β-Chloro PG analogues 4a—e and 5a, e—e were found to be potent and selective EP2-receptor agonists. Among them, the compound 4aLy, which is a chemically stabilized lysine salt of 4a, exhibited an excellent profile both in biological activities and physicochemical properties. The agonist 4aLy was found to suppress uterine motility in anesthetized pregnant rats, while PGE $_2$ stimulated uterine motility. Structure—activity relationships (SARs) are discussed. © 2002 Elsevier Science Ltd. All rights reserved.

Introduction

The diverse biological activities of PGE₂ are considered to be a hybrid of the activities that are mediated by the four EP-receptor subtypes EP1, EP2, EP3 and EP4.1 Of these, EP2-receptor² has been characterized as inducing relaxation of blood vessel, gastrointestinal tract, trachea and uterine smooth muscle,³ and is suggested to play some role in the production and control of cytokines⁴ and bone metabolism.5 Development of a potent and selective EP2-receptor agonist is expected to be a promising approach to developing a therapeutically useful drug. In a preceding study,6 we reported the identification of 16-hydroxy-17,17-trimethylene PGE₂ 1a as a highly selective EP2-receptor agonist. Although 1a could be a useful research tool for the EP2-receptor mediated pharmacological activities, its clinical utility is limited by a weak potency relative to that of PGE₂. Moreover it is a chemically unstable compound because it is well known that PGE derivatives I start to degrade with the initial conversion to the corresponding PGA derivatives **II** as shown in Scheme 1.

Chemistry

9β-Chloro PGF analogues **4a–e** were synthesized from the corresponding 9-keto analogues **6a–e**⁶ as shown in Scheme 3. Sequential reactions were: (1) stereoselective

Scheme 1. Degradation pathway of PGE derivatives.

*Corresponding author. Tel.: +81-75-961-1151; fax: +81-75-962-9314; e-mail: k.tani@ono.co.jp

Since our final goal is to identify a highly selective EP2-receptor agonist and develop it as a clinical candidate, we focused on the identification of a more potent and chemically stable EP2-receptor agonist. Thus, synthesis and biological evaluation of PGF derivatives, which do not undergo the degradation reaction shown in Scheme 1, were continued based on the information obtained from the preceding experimental findings. We report here the identification and biological evaluation of a more potent and chemically stable EP2-receptor agonist. Structure–activity relationships (SARs) are also discussed.

reduction of the 9-keto group of 6a-e with lithium trisec-butylborohydride;⁷ (2) acetylation with acetic anhydride; (3) deprotection of the t-butylsimethylsilyl (TBS) groups with aqueous hydrogen fluoride;⁸ (4) separation of the diastereoisomer (16R-OH) by a silica gel column chromatography gave 8a-e, respectively. Protection of the two hydroxy groups with t-butyldimethylsilyl trifluoromethanesulfonate followed by deacetylation with potassium carbonate in methanol gave 10a-e, respectively. Tosylation of 10a-e followed by chlorination with tetrabutylammonium chloride9 and deprotection of the two TBS groups yielded 12a-e. The corresponding $\Delta^{8,9}$ unsaturated side product was removed by column chromatography. Compounds 12a-e were converted to 4a-e by the alkaline hydrolysis, respectively. Compounds 5a and 5c-e were synthesized from 7a and 7c-e,⁶ respectively, by the same procedure as described in the synthesis of 4a-e from 6a-e. The configuration of C-16 of 4a was tentatively assigned to 16S and reconfirmed by the enantioselective synthesis, which will be presented in a subsequent report.

Results and Discussion

To block the dehydration reaction of the β-hydroxy ketone moiety of the PGE analogues I described in Scheme 1, 9β-chloro PGF analogues 10 4a–e, 5a and 5c–e were synthesized and biologically evaluated. The 9β-chloro PGF analogue, which is illustrated in Schering's nocloprost 11 and DP-receptor agonist, 9,12 has been reported to be chemically stable. In our preliminary study, the 9-deoxy-9β-chloro PGF₂ 310 exhibited a high EP2-receptor affinity (Table 1). As such, 9β-chloro PGF analogue was expected to show a further increased EP2-receptor affinity. As demonstrated in Scheme 2, chemical modification began with structural hybridization of

Scheme 2. Molecular design of 9β -chloro PGF analogues 4a-e, 5a and 5c-e.

1a, **2** and **3**. A series of 9β-chloro PGF analogues was evaluated for mouse (m) EP-receptor and human (h) IP-receptor affinities, and mEP2-receptor agonist activity as reported previously. Two series of 9β-chloro PGF analogues, **4a**–**e**, **5a** and **5c**–**e** were identified. Of these, **4a** exhibited the most promising profiles both in the in vitro and in vivo studies. Compound **4a** was further evaluated for its ability to suppress uterine motility in anesthetized pregnant rats after intravenous administration.

Previously, 6 we succeeded in identifying a series of 16hydroxy-17,17-trimethylene PGE₂ analogues, which demonstrated highly selective EP2-receptor agonist activity. On the basis of the reported SARs, 4a-e, 5a and **5c–e** were synthesized and biologically evaluated (Table 2). All of these compounds showed only weak affinity to the hIP-receptor up to 10⁴ μM. 9β-Chloro-16-hydroxy-17,17-trimethylene-ω-nor-PGF₂ 4a exhibited a promising profile both in EP2-receptor selectivity and agonist activity. Homologation of the ω-chain of 4a provided 4b with slightly less subtype selectivity with regards to the EP3- and EP4-subtypes, while their potencies both in the EP2-receptor affinity (K_i) and agonist activity (EC_{50}) were slightly reduced. Replacement of the n-propyl moiety of **4b** with an allyl moiety afforded **4c** an increase both in the EP2-receptor affinity and agonist activity, while its EP1-receptor selectivity was reduced relative to **4b**. The EP2-receptor affinity was maximized in the 16cyclopropylmethyl derivative 4d, while its EP4-receptor affinity increased relative to 4a-c and its potent EC₅₀ value was retained. Replacement of the 16-cyclopropylmethyl moiety of 4d with an isobutyl moiety afforded **4e** a 10-fold less potent EC_{50} value relative to **4d**. The EP1-receptor affinity of 4e was reduced compared with **4d** while its EP4-receptor affinity was restored.

The same chemical modification as described above was applied to the 1,6-inter-p-phenylene analogues to give 5a and 5c-e. Compound 5a exhibited EP2-receptor selectivity with several times less potent affinity than those of 4a-e, while its EC₅₀ value was markedly reduced relative to those of 4a-e. The 16-allyl analogue 5c demonstrated more potent EP2-receptor affinity and agonist activity than 5a with good subtype selectivity. The 16-cyclopropylmethyl analogue 5d demonstrated more potent EP2-receptor affinity and agonist activity than 5a and 5c, while its EP1- and EP4-receptor affinities increased. The EP2-receptor affinity of the 17-isobutyl analogue 5e was as potent as that of 5a, while its agonist activity was less potent. The EP2-receptor affinities of 5a and 5c-e were nearly 3-fold less potent than those of the corresponding PGF₂ analogues 4a and 4c–e, respectively, while their EC₅₀ values were more than 100-fold less potent than those of 4a and 4c–e. With regards to the two types of α -chain, SAR of 9 β -chloro analogues was different from that of 9-keto analogues.⁶ 9β-Chloro analogues demonstrated a relatively big difference in their EC₅₀ values up to their structural change in the α -chain, although 9-keto analogues demonstrated a relatively small difference in their EC₅₀ values. 6 In the case of compound 5, the flexibility of the α -chain was limited compared with that of 4. Thus, the conformational

AcO
$$X = CO_2Me$$

TBSO TBS

TBSO TB

Scheme 3. Synthesis of 9β-chloro analogues 4a–e, 5a and 5c–e. Reagent: (a) lithium tri-sec-butylborohydride, THF, -78 °C; (b) Ac₂O, DMAP, pyridine; (c) aqueous HF, MeCN; (d) separation; (e) TBSOTf, 2,6-lutidine, CH₂Cl₂; (f) K₂CO₃, MeOH; (g) TsCl, pyridine; (h) n-Bu₄NCl, toluene; (i) aqueous NaOH, MeOH.

change in the 5-membered ring that was caused by transformation of C-9 from sp^2 to sp^3 reduced the EP2 agonist activity of 5.

The compound 4a displaced [3H]PGE₂, bound to the membrane of CHO cells expressing the mEP2- and hEP2 receptors with K_i values of 2.2 and 0.74 nM, respectively. The EP2-receptor affinity was nearly 10fold higher than that of PGE2, and 150- and 300-fold higher than those of AH-1320513 and butaprost,14 respectively. Compound 4a exhibited a much lower affinity for the other EP subtypes (mEP1, mEP3α and EP4) as well as prostanoid receptors (mFP, hTP and hIP) other than the mDP-receptor. The affinity of 4a for the mDP-receptor was at least 15-fold lower than for the mEP2-receptor. Similar findings were confirmed by functional studies based on increases in intracellular cAMP production and Ca²⁺ levels. As shown in Figure 1, 4a stimulated cAMP production in mEP2-receptor expressing cells with an EC₅₀ value of 2.8 nM. Its potency was comparable to that of PGE₂, and nearly 10-fold more potent than that of butaprost free acid form 1b. Compound 4a showed much lower agonist activity to the other prostanoid receptor subtypes. The details of the biological profiles of 4a will be described in a subsequent report.

The modifications resulted in the discovery of highly selective EP2-receptor agonists $4\mathbf{a}$ – \mathbf{e} , $5\mathbf{a}$ and $5\mathbf{c}$ – \mathbf{e} . The in vivo activities of the test compounds $1\mathbf{a}$, $1\mathbf{b}$, $4\mathbf{a}$, $4\mathbf{c}$ and $5\mathbf{c}$ were evaluated using anesthetized pregnant rats (on days 18-20 of pregnancy: n=5-6). Whereas PGE_2 stimulated uterine motility, 15 $1\mathbf{a}$, $1\mathbf{b}$, $4\mathbf{a}$, $4\mathbf{c}$ and $5\mathbf{c}$ suppressed uterine motility (Table 3). Intravenous administration of $4\mathbf{a}$ and $4\mathbf{c}$ showed significant suppression of

Table 1. The K_i values of PGE₂ and 3

Compd	Binding K_i (nM)				
	mEP1	mEP2	mEP3	mEP4	
PGE ₂	18	38	5.0	3.1	
3	0.3	1.4	0.8	0.2	

uterine motility in a dose-dependent manner. Increased potency in the suppression of uterine motility by **4a** was observed relative to those of 9-keto analogues **1a** and **1b**, while the interphenylene analogue **5c** demonstrated much less potency. Complete elimination of side effects such as hypotension could not be accomplished, although the hypotensive effects tended to decrease by reducing the affinity for the IP-receptor compared with that of **1b**. Consequently, the hypotension caused by **1a**, **4a** and **4b** was considered to be one of the effects inherent in an EP2-receptor agonist. Based on its highly selective EP2-receptor affinity, potent agonist activity and in vivo effect on spontaneous uterine motility in late term pregnant rats, compound **4a** was selected for further evaluation.

Although 9β-chloro PGF₂ **4a** was expected to be chemically stable, it demonstrated a similar degree of instability to the 9-keto analogues **1a–b**. However, it was found to be markedly stabilized by forming a salt of **4a** with a base such as lysine. The physicochemical properties of the lysine salt **4aLy** in handling and water-solubility, etc. were excellent. As shown in Table 4, both of the compounds **1a** and **4a** were viscous oils, and unstable at ambient temperatures. According to the

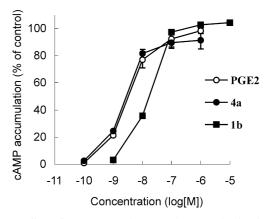


Figure 1. Effect of PGE₂, 1b and 4a on cAMP production in CHO cells expressing mouse EP2-receptors.

HPLC analysis, the percentage of compound 1a remaining after storage at ambient temperatures for 8 weeks was 8%. The compound 4a showed low stability (after 1 month at 60°C, the percentage of compound remaining was 21%) while the sodium salt 4aNa showed quite good stability at 60°C. However 4aNa was still not good enough to be developed as a clinical candidate because it was hygroscopically very unstable. The lysine salt 4aLy demonstrated excellent physicochemical properties such as stability, solubility in water and descriptive features. The percentage remaining of 4aLy after storage at 60°C for one month was 100%, and its

solubility in water was more than 100 mg. Additionally, **4aLy** was a good crystalline product with a melting point of 166–168 °C.

In summary, the highly selective EP2-receptor agonist 4aLy was identified by chemical modification of the chemical lead 1a, which was derived from butaprost. Using compound 4aLy, its biological activities, which are mediated by the EP2-receptor, were investigated regarding uterine contractile activity. The selective EP2-receptor agonist 4aLy was found to suppress uterine motility in anesthetized pregnant rats, while PGE₂ sti-

Table 2. Biological evaluation of 4a-e, 5a and 5c-e

Compd	R_1	R_2	Binding K_i (nM)			$EC_{50} \ EC_{50} \ (nM)^b$	
			mEP1	mEP2	mEP3	mEP4	EP2
4a	,.''\CO ₂ H	^	> 104	3.3	> 104	6100	3.8
4b	\CO ₂ H	~	> 104	4.2	2800	3300	6.0
4c	\CO ₂ H	~/	1300	1.7	2700	2300	1.8
4d	\CO ₂ H	\sim	1100	0.9	2700	400	2.5
4e	\CO ₂ H	\sim	740	2.7	5200	2600	21
5a	\CO ₂ H	^	2100	10	> 10 ⁴	> 10 ⁴	310
5c	\CO ₂ H	~/	> 10 ⁴	5.1	> 10 ⁴	> 10 ⁴	240
5d	\CO ₂ H	\sim	660	3.0	> 10 ⁴	1100	180
5e	CO ₂ H	\sim	> 104	10	> 104	2900	790

^aUsing membrane fractions of Chinese hamster ovary (CHO) cells expressing prostanoid receptors, K_i values were determined by the competitive binding assay, which was performed according to the method of Kiriyama et al.¹⁷ with some modifications. When the test compound did not displace binding of radioligands by 50% even at a concentration of 10^4 nM, the K_i value was not determined (expressed > 10^4).

Table 3. Pharmacological effects of selective EP2-receptor agonists in rat

Compd	Uterine activity ^a		Hypotensive effect	
	ED ₅₀ (μg/kg iv)	Relative potency $(1b = 1.0)$	ΔBP (maximal response, mmHg)	Relative potency $(1b = 1.0)$
PGE ₂	Stimulate ^b	_	_	_
la -	274.7	1.7	22.8 (1000) ^c	0.57
1b	455.2	1.0	39.8 (1000)	1.0
4a	32.9	13.8	24.4 (100)	0.61
4c	33.5	13.6	19.2 (100)	0.48
5c	> 300	< 1.5	15.8 (300)	_

^aThe test compounds were intravenously administrated to anesthetized pregnant rats (on days 18–20 of pregnancy, n = 5–6). Uterine motility was evaluated according to the Montevideo method. ¹⁶ Uterine activity was calculated from the uterine motility for the 5-minute period before and after commencement of the administration, and post-dose uterine activity was calculated as percentage of inhibition to pre-dose uterine activity. ^bPGE₂ stimulated uterine motility at > 1.8 μ g/kg. ¹⁵

^bWith regards to the subtype-receptor agonist activity, EC_{50} values were determined based on the effects of the test compounds on the increases in intracellular cAMP production in the mouse (m) EP2 receptor.

^cHypotensive effects (Δ BP) showed maximal efficacy at roughly 3-fold dosage of ED₅₀ values of the uterine activity. Numbers in parentheses indicate the dose of maximal hypotensive response (μ g/kg iv).

Table 4. Physicochemical properties of EP2-receptor agonists

Compd	Stability ^a (%)	Solubility (mg/mL of H ₂ O)	Description	Mp (°C)
1a	8 ^b	N.T. ^d	Viscous oil	
4a	21°	N.T.	Viscous oil	_
4aNa	97°	> 10	Hygroscopic amorphous	_
4aLy	100°	> 100	Colorless crystal	166–168

^aPercentage of the remaining test compound was determined by HPLC analysis.

mulated uterine motility. Other biological activities of **4aLy** are being investigated in our laboratory.

Experimental

General directions

Analytical samples were homogeneous as confirmed by TLC, and afforded spectroscopic results consistent with the assigned structures. All ¹H NMR spectra were obtained using a Varian Gemini-200, VXR-200s or Mercury300 spectrometer. Mass spectra were obtained on a Hitachi M1200H, JEOL JMS-DX303HF or Per-Septive Voyager Elite spectrometer. IR spectra were measured on a Perkin-Elmer FT-IR 1760X or Jasco FT/IR-430 spectrometer. Elemental analyses for carbon, hydrogen, nitrogen and sulfur were carried out on a Perkin-Elmer PE2400 SeriesII CHNS/O analyzer. Optical rotations were measured using a Jasco DIP-1000 polarimeter. Column chromatography was carried out on silica gel [Merck silica gel 60 (0.063-0.200 mm) or Wako Gel C200]. Thin layer chromatography was performed on silica gel (Merck TLC or HPTLC plates, silica gel 60 F_{254}).

(16S)-9-*O*-Acetyl-15-deoxy-16-hydroxy-17,17-trimethylene PGF_{2 α} methyl ester (8b). To a stirred solution of 6b (740 mg, 1.17 mmol) in 20 mL of THF was added lithium tri-sec-butylborohydride (1.0 M in THF, 1.76 mL, 1.76 mmol) at -78 °C under an argon atmosphere, and stirring continued for 30 min. The reaction was quenched with 1 mL of 30% aqueous hydrogen peroxide and allowed to warm up to 0°C. The reaction mixture was extracted with EtOAc. The organic layer was washed with aqueous HCl, then brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel (10% EtOAc/n-hexane) to yield the 9α-hydroxy derivative (558 mg, 75%) as a colorless oil. TLC R_f 0.35 (nhexane/EtOAc, 9/1); ¹H NMR (200 MHz, ČDCl₃) δ 5.60–5.10 (m, 4H), 4.15–3.90 (m, 2H), 3.66 (s, 3H), 3.55 (t, J = 5 Hz, 1H), 2.70-2.50 (m, 1H), 2.40-1.20 (m, 24H),1.00–0.80 (m, 21H), 0.10–0.00 (m, 12H).

A solution of the 9α -hydroxy derivative (518 mg, 0.813 mmol), acetic anhydride (0.15 mL, 1.62 mmol), 4-(dimethylamino)pyridine (3 mg) and 1 mL of pyridine was stirred for 12 h at room temperature. The reaction mixture was diluted with EtOAc and washed with

water. The organic layer was washed with aqueous HCl water and brine, dried over magnesium sulfate and concentrated in vacuo to give a crude 9α -acetoxy derivative as an oil.

To a stirred solution of above-described crude 9α -acetoxy derivative and 10 mL of acetonitrile, 0.5 mL of 48% aqueous HF was added at 0°C and stirring continued for 1.5 h at room temperature. The reaction mixture was poured into saturated aqueous sodium bicarbonate. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromatography (Lobar® pre-packed column, size B, 60% EtOAc/n-hexane) to give a less polar product (16R-OH, 142 mg, 39%) and a more polar product (16S-OH, 8b, 148 mg, 40%). Less polar product; Colorless oil; TLC R_f 0.30 (n-hexane/EtOAc, 1/1); ¹H NMR (200 MHz, CDCl₃) δ 5.66 (ddd, J = 15.0, 7.8, 6.0 Hz, 1H), 5.45–5.30(m, 3H), 5.15–5.05 (m, 1H), 4.00–3.85 (m, 1H), 3.67 (s, 3H), 3.55 (dd, J = 10.0, 2.4 Hz, 1H), 2.58–2.40 (m, 1H), 2.40-1.30 (m, 23H), 2.31 (t, J=7.4 Hz, 2H), 2.06 (s, 3H), 0.94 (t, J = 7.2 Hz, 3H). More polar product **8b**; Colorless oil; TLC $R_f = 0.23$ (n-hexane/EtOAc, 1/1); ¹H NMR (200 MHz, CDCl₃) δ 5.65 (ddd, J = 14.8, 8.0, 6.2Hz, 1H), 5.43–5.25 (m, 3H), 5.15–5.05 (m, 1H), 3.95– 3.82 (m, 1H), 3.67 (s, 3H), 3.55 (dd, J = 10.0, 2.4 Hz, 1H), 2.60–2.40 (m, 1H), 2.40–1.20 (m, 23H), 2.30 (t, J = 7.4 Hz, 2H), 2.06 (s, 3H), 0.94 (t, J = 6.7 Hz, 3H).

(16S)-11-O-(t-Butyldimethylsilyl)-15-deoxy-16-(t-butyldimethylsilyloxy)-17,17-trimethylene $PGF_2\alpha$ methyl ester (10b). To a stirred solution of 8b (148 mg, 0.329 mmol) and 2,6-lutidine (0.18 mL, 1.58 mmol) in methylene chloride (3 mL) was added dropwise t-butyldimethylsilyl trifluoromethanesulfonate (0.22 mL, 0.948 mmol) at 0 °C under argon atmosphere. After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous sodium bicarbonate. The aqueous layer was extracted with EtOAc. The combined organic layer was dried over magnesium sulfate and concentrated in vacuo. The residue was dissolved in methanol (2 mL) after the addition of potassium carbonate (87 mg, 0.632 mmol), then the suspension was stirred for 2 h at 40 °C. After cooling in an ice-bath, the reaction was quenched with water and extracted with EtOAc. The organic layer was washed with water, then brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromato-

^bPercentage after 8 weeks at ambient temperatures.

^cPercentage after 1 month at 60 °C.

^dNot tested.

graphy on silica gel to yield **10b** (202 mg, 96%) as a colorless oil. TLC R_f =0.35 (n-hexane/EtOAc, 9/1); 1 H NMR (200 MHz, CDCl₃) δ 5.60–5.10 (m, 4H), 4.15–3.90 (m, 2H), 3.66 (s, 3H), 3.55 (t, J=5 Hz, 1H), 2.70–2.50 (m, 1H), 2.40-1.20 (m, 24H), 1.00–0.80 (m, 21H), 0.10–0.00 (m, 12H).

(16S)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17trimethylenePGF₂ methyl ester (12b). To a stirred solution of **10b** (137 mg, 0.215 mmol) in pyridine (1 mL) was added p-toluenesulfonyl chloride (435 mg, 2.28 mmol) at room temperature under argon atmosphere. After stirring for 12 h at room temperature, the reaction mixture was quenched with water and extracted with EtOAc. The organic layer was washed with aqueous HCl, water, then brine, dried over magnesium sulfate and concentrated in vacuo to give a tosylate as an oil. To a stirred solution of the tosylate in toluene (5 mL) was added tetrabutylammonium chloride (598 mg, 2.15 mmol). The reaction mixture was stirred for 6 h at 50 °C under an argon atmosphere. After cooling in an icebath, the reaction mixture was quenched with water and extracted with EtOAc. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vacuo to give a crude product. To a stirred solution of this crude product and 5 mL of acetonitrile, 0.25 mL of 48% aqueous HF was added at 0 °C. The reaction mixture was stirred for 1.5 h at room temperature, and then poured into saturated aqueous sodium bicarbonate-EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromatography (Lobar® pre-packed column, size B, 5% 2-propanol/toluene) to remove an eliminated product ($\Delta^{8,9}$ unsaturated product) to yield **12b** (62 mg, 67%) as a colorless oil. TLC $R_f = 0.26$ (n-hexane/EtOAc, 2/1); MS (APCI, Pos, 20V) m/z 409 (M + H-H₂O)⁺, 391 $(M+H-2H_2O)^+$, 355 $(M+H-2H_2O-HCI)^+$ (neat) 3369, 2954, 1739, 1436, 1222, 1071, 968 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 5.58 (ddd, J = 15.0, 8.2, 5.6Hz, 1H), 5.50-5.32 (m, 3H), 4.18-3.95 (m, 2H), 3.67 (s, 3H), 3.53 (dd, J = 10.4, 2.2 Hz, 1H), 2.76 (br, 1H), 2.40– 1.20 (m, 23H), 2.33 (t, J = 7.3 Hz, 2H), 0.94 (t, J = 6.8Hz, 3H).

(16S)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17trimethylene-PGF₂ (4b). To a stirred solution of 12b (45) mg, 0.110 mmol) in methanol (3 mL), 2 N sodium hydroxide (1 mL) was added at room temperature. After stirring for 1 h, the reaction mixture was acidified with aqueous hydrochloric acid and extracted with EtOAc. The organic layer was washed with water, then brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel to yield 4b (44 mg, quant.) as a pale yellow oil. TLC R_f 0.31 (n-hexane/EtOAc/AcOH, 3/2/0.05); MS (APCI, Neg, 20V) m/z 411 (M-H)-; IR (neat) 3369, 2931, 1709, 1435, 1249, 1070, 968 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 5.58 (ddd, J = 15.4, 7.6, 5.4 Hz, 1H), 5.55–5.35 (m, 3H), 4.20–4.00 (m, 2H), 4.00– 3.00 (br, 3H), 3.57 (dd, J = 10.2, 2.2 Hz, 1H), 2.40–1.20 (m, 22H), 2.36 (t, J = 6.9 Hz, 2H), 0.94 (t, J = 6.8 Hz,

3H). Compounds **4a**, **4c–e**, **5a** and **5c–e** were synthesized from **6a**, **6c–e**, **7a** and **7c–e**, respectively, according to the same procedure described above.

(16*S*)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-ω-norPGF₂ (4a). Pale yellow viscous oil; optical rotation [α]_D²⁵ = -24.4 (c 1.00, EtOH); TLC R_f = 0.33 (EtOAc/n-hexane/AcOH, 60/30/1); IR (neat) 3351, 2936, 1709, 1432, 1243, 1069, 968, 866 cm⁻¹; MS (FAB, Neg) m/z 397 (M-H)-, 361 (M-H-HCl)⁻; ¹H NMR (200 MHz, CDCl₃) δ 5.56 (ddd, J= 15.4, 8.2, 5.2 Hz, 1H), 5.55–5.30 (m, 3H), 5.60–5.00 (br, 3H), 4.20–3.96 (m, 2H), 3.56 (dd, J= 10.2, 2.0 Hz, 1H), 2.42–1.30 (m, 20H), 2.35 (t, J= 7.0 Hz, 2H), 0.92 (t, J= 7.4 Hz, 3H).

(16*S*)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-19,20-didehydroPGF₂ (4c). Pale yellow viscous oil; TLC R_f 0.74 (n-hexane/EtOAc/AcOH, 1/3/0.05); MS (APCI, Neg, 20V) m/z 409 (M-H) $^-$; IR (neat) 3363, 2936, 1709, 1639, 1435, 1245, 1072, 996, 969, 914, 734 cm $^{-1}$; ¹H NMR (300 MHz, CDCl₃) δ 5.94 (ddt, J=17.1, 10.2, 7.2 Hz, 1H), 5.56 (ddd, J=15.3, 7.8, 6.0 Hz, 1H), 5.50–5.36 (m, 3H), 5.17–5.07 (m, 2H), 4.11 (q, J=7.2 Hz, 1H), 4.04 (m, 1H), 3.57 (dd, J=10.2, 2.1 Hz, 1H), 2.40–1.63 (m, 25H).

(16*S*)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-ω-dinor-18-cyclopropylPGF₂ (4d). Colorless viscous oil; TLC R_f 0.31 (n-hexane/AcOEt/AcOH, 3/2/0.05); IR (neat) 3367, 2932, 1708, 1433, 1248, 1019, 969 cm⁻¹; MS (FAB, Pos) m/z 425 (M+H)⁺, 407 (M+H-H₂O)⁺, 389 (M+H-2H₂O)⁺, 353 (M+H-2H₂O-HCl)⁺; ¹H NMR (200 MHz, CDCl₃) δ 5.60 (ddd, J= 15.4, 7.6, 5.4 Hz, 1H), 5.55–5.35 (m, 3H), 4.20–3.98 (m, 2H), 4.20–3.00 (br, 3H), 3.71 (dd, J= 10.4, 2.2 Hz, 1H), 2.40–1.60 (m, 8H), 2.36 (t, J=6.9 Hz, 2H), 1.51 (dd, J=14.2, 6.8 Hz, 1H), 1.37 (dd, J=14.2, 6.2 Hz, 1H), 0.90–0.65 (m, 1H), 0.57–0.45 (m, 2H), 0.15–0.05 (m, 2H).

(16*S*)-9-deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-19-methylPGF₂ (4e). Colorless viscous oil; TLC R_f =0.34 (n-hexane/AcOEt/AcOH, 3/2/0.05); IR (neat) 3367, 2952, 1708, 1435, 1251, 1074, 969 cm⁻¹; MS (FAB, Pos) m/z = 427 (M + H)⁺, 391 (M + H⁻2H₂O)⁺, 355 (M + H⁻2H₂O⁻HCl)⁺; ¹H NMR (200 MHz, CDCl₃) δ 5.60 (ddd, J=15.4, 8.2, 5.6 Hz, 1H), 5.55–5.35 (m, 3H), 4.20–3.98 (m, 2H), 4.20–3.00 (br, 3H), 3.65 (dd, J=10.2, 2.2 Hz, 1H), 2.40–1.65 (m, 19H), 2.36 (t, J=7.1 Hz, 2H), 1.55 (dd, J=14.2, 6.6 Hz, 1H), 1.33 (dd, J=14.2, 6.2 Hz, 1H), 0.92 (d, J=6.6 Hz, 3H), 0.91 (d, J=6.6 Hz, 3H).

(1*R*,2*R*,3*R*,4*R*)-1-Chloro-2-[2-(4-carboxyphenyl)ethyl]-3-[(1*E*,4*S*)-4-hydroxy-5,5-trimethylene-1-heptenoyl]-4-hydroxycyclopentane (5a). Colorless viscous oil; TLC R_f = 0.14 (n-hexane/AcOEt, 1/1); MS (APCI, Neg, 20V) m/z 419 (M-H)-; IR (neat) 3391, 2931, 1694, 1611, 1575, 1421, 1278, 1179, 1074 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.00 (d, J= 8.0 Hz, 2H), 7.27 (d, J= 18.0 Hz, 2H), 5.58 (ddd, J= 15.4, 8.4, 6.6 Hz, 1H), 5.40 (dd, J= 15.4, 8.2 Hz, 1H), 4.40–3.00 (br, 3H), 4.18–4.03 (m,

2H), 3.56 (dd, J=10.2, 2.2 Hz, 1H), 2.79 (t, J=7.6 Hz,2H), 2.38–1.30 (m, 16H), 0.91 (t, J=7.8 Hz, 3H).

(1*R*,2*R*,3*R*,4*R*)-1-Chloro-2-[2-(4-carboxyphenyl)ethyl]-3-[(1*E*,4*S*)-4-hydroxy-5,5-trimethylene-1,7-octadienoyl]-4-hydroxycyclopentane (5c). Colorless viscous oil; TLC R_f 0.15 (n-hexane/AcOEt, 1/1); MS (APCI, Neg, 20V) m/z 431 (M-H) $^-$; IR (neat) 3390, 2930, 1695, 1640, 1611, 1575, 1422, 1279, 1179, 1078 cm $^{-1}$; 1 H NMR (200 MHz, CDCl₃) δ 8.00 (d, J=8.0 Hz, 2H), 7.27 (d, J=18.0 Hz, 2H), 5.93 (ddt, J=17.4, 10.0, 7.2 Hz, 1H), 5.65-5.50 (m, 1H), 5.38 (dd, J=15.4, 8.4 Hz, 1H), 5.15-5.06 (m, 2H), 4.80-3.60 (br, 3H), 4.18-4.00 (m, 2H), 3.55 (bd, J=8.4 Hz, 1H), 2.78 (t, J=7.6 Hz, 2H), 2.41-1.60 (m, 16H).

(1*R*,2*R*,3*R*,4*R*)-1-Chloro-2-[2-(4-carboxyphenyl)ethyl]-3-[(1*E*,4*S*)-4-hydroxy-5,5-trimethylene-6-cyclopropyl-1-hexenoyl]-4-hydroxycyclopentane (5d). Colorless viscous oil; TLC R_f 0.26 (n-hexane/EtOAc, 1/2); MS (APCI, Neg. 20V) m/z 445 (M-H)⁻, 409 (M-H-HCl)—; IR (neat) 3369, 2930, 1694, 1611, 1423, 1284, 1179, 1083, 1019, 970, 909, 858, 734 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.01 (d, J=8.0 Hz, 2H), 7.28 (d, J=8.0 Hz, 2H), 5.57 (m, 1H), 5.39 (m, 1H), 4.38 (br, 3H), 4.10 (m, 2H), 3.70 (bd, J=8.4 Hz, 1H), 2.79 (t, J=7.6 Hz, 2H), 2.40–1.62 (m, 14H), 1.52 (dd, J=14, 6.6 Hz, 1H), 1.36 (dd, J=14, 6.4 Hz, 1H), 0.78 (m, 1H), 0.49 (m, 2H), 0.10 (m, 2H).

(1*R*,2*R*,3*R*,4*R*)-1-Chloro-2-[2-(4-carboxyphenyl)ethyl]-3-[(1*E*,4*S*)-4-hydroxy-5,5-trimethylene-7-methyl-1-octenoyl]-4-hydroxycyclopentane (5e). Colorless viscous oil; TLC R_f 0.33 (n-hexane/EtOAc, 1/2); MS (APCI, Neg. 20V) m/z 447 (M-H)⁻, 411 (M-H-HCl)⁻; IR (neat) 3368, 2952, 1695, 1611, 1422, 1315, 1283, 1179, 1080, 970, 909, 859, 735 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) 8 8.00 (d, J=8.2 Hz, 2H), 7.27 (d, J=8.2 Hz, 2H), 5.60 (ddd, J=15, 8.8, 5.2 Hz, 1H), 5.42 (dd, J=15, 7.8 Hz, 1H), 4.12 (m, 2H), 3.69 (br, 3H), 3.63 (dd, J=10, 1.8 Hz, 1H), 2.79 (t, J=7.9 Hz, 2H), 2.38–1.62 (m, 15H), 1.54 (dd, J=14, 6.8 Hz, 1H), 1.33 (dd, J=14, 6.4 Hz, 1H), 0.91 (d, J=6.6 Hz, 3H), 0.90 (d, J=6.6 Hz, 3H).

(16S)-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-ω-norPGF₂ sodium salt (4aNa). To a stirred solution of 4a (2.33 g, 5 84 mmol) in 1,4-dioxane (10 mL) was added aqueous 1 N sodium hydroxide (5.84 mL). The reaction mixture was stirred for 10 min, concentrated in vacuo and lyophilized to yield the sodium salt 4aNa (2.39 g, 97%) as a white amorphous. MS (FAB, Pos.) m/z 421 (M+H)⁺; IR (neat) 3398, 2937, 1562, 1407, 1074 cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6) δ 6.00–4.00 (br, 2H), 5.60 (ddd, J=15.4, 8.0, 5.8 Hz, 1H), 5.51–5.23 (m, 3H), 4.09 (q, J=7.3 Hz, 1H), 3.87 (q, J=6.5Hz, 1H), 3.36 (dd, J=9.2, 2.8 Hz, 1H), 2.30–1.20 (m, 22H), 0.85 (t, J=7.3 Hz, 3H).

(16S)-9-deoxy-9 β -chloro-15-deoxy-16-hydroxy-17,17-trimethylene- ω -norPGF₂ L-lysine salt (4aLy). To a stirred solution of 4a (45.9 g, 110 mmol) in 460 mL of ethanol was added L-lysine (16.0 g, 110 mmol). To the resulting suspension, 1600 mL of ethanol was added. The mixture was heated at 80 °C until the precipitates dissolved, then

insoluble substances were removed by filtration. After cooling, 5 L of EtOAc was added to the filtrate and the resulting precipitates were collected by filtration and dried in vacuo to yield the L-lysine salt **4aLy** (54.6 g, 91%) as a colorless crystal. Mp 166–168 °C (dec.); Optical rotation [α]_D²⁵ = -20.4 (c 1.00, H₂O); MS (FAB, Pos.) m/z 545 (M + H) + , 421 (M – Lys + Na) +; IR (KBr) 3424, 2934, 1618, 1542, 1406, 1307, 965 cm -1; ¹H NMR (200 MHz, CD₃OD) δ 5.70–5.30 (m, 4H), 4.02 (q, J=7.1 Hz, 2H), 3.58–3.45 (m, 2H), 2.92 (t, J=7.3 Hz, 2H), 2.40–1.30 (m, 28H), 0.92 (t, J=7.5 Hz, 3H). Anal. calcd for C₂₈H₄₉ClN₂O₆; C, 61.69; H, 9.06; N, 5.14; found; C, 61.72; H, 9.21; N, 5.21.

Prostanoid EP receptor binding assay

Membranes from CHO cells expressing the prostanoid receptors were incubated with radioligand (2.5 nM of [³H]PGE₂) and the test compounds at various concentrations in assay buffer (10 mM Kpi (KH₂PO₄, KOH; pH 6.0), 1 mM EDTA and 0.1 mM NaCl). Incubation was carried out at 25 °C for 60 min except for EP1-receptor (20 min). The incubation was terminated by filtration through Whatman GF/B filters. The filters were then washed with ice-cold buffer [10 mM Kpi (KH₂PO₄, KOH; pH 6.0), 0.1 mM NaCl], and the radioactivity on the filter was measured in 6mL of liquid scintillation (ACSII) mixture with a liquid scintillation counter. Nonspecific binding was determined by incubation of 10 μM unlabeled PGE₂ with assay buffer.

Measurement of cAMP production

CHO cells expressing EP2-receptor were cultured in 24-well plates (1×10^5 cells/well). After 2 days, the media were removed and cells were washed with 500 μ L of Minimum Essential Medium (MEM) and preincubated for 10 min in 450 μ L of assay buffer (MEM containing 1 mM of IBMX, 1% of BSA) at 37 °C. Then reaction was started with the addition of each test compound in 50 μ L of assay buffer. After incubation for 10 min at 37 °C, the reaction was terminated by addition of 500 μ L of ice-cold 10% trichloroacetic acid. The cAMP production was measured by radioimmunoassay using a cAMP assay kit (Amersham).

Evaluation of uterine motility suppression activity of EP2 agonists

Fed pregnant rats were anesthetized with urethane (1.5 g/5 mL/kg, sc) and fixed in the dorsal position. A midline incision was made in the lower abdomen and a small incision was made near the cervical area of the right or left uterine horn, and a balloon catheter (Okamoto Medical Industry, for rats) was inserted between the uterine wall and the amnion. After suturing the abdominal incision, the intraballoon pressure was loaded to approximately 5–15 mmHg. A catheter (POLY-ETHYLENE TUBE SP10, Natsume Seisakusho) was placed into the femoral vein for the administration of the test compound. Uterine motility was recorded on a recticoder (WR3320 or WR3701, GRAPHTEC) via a pressure transducer (Life Kit DX-360, Nihon Kohden

Corp.) and a strain pressure amplifier (AP-601G, Nihon Kohden Corp.). After spontaneous uterine motility was kept at a stable level, each experiment was started. Briefly, the vehicle and then the test compound were intravenously administered successively starting from lower doses at 10-minute or larger intervals. Before each dosing, it was confirmed that uterine motility was kept stable for at least 5 min.

Uterine motility was evaluated according to the Montevideo method. ¹⁶ In the intravenous injection study, uterine activity was calculated for 5-min periods before and after administration of the test compound, and expressed as a percentage relative to pre-treatment values: Uterine activity (% of pre-value) = (5-min post-dose uterine activity/5-min pre-dose uterine activity)×100.

References and Notes

- 1. Coleman, R. A.; Smith, W. L.; Narumiya, S. *Pharmacol. Rev.* **1994**, *46*, 205.
- 2. (a) Katsuyama, M.; Nishigaki, N.; Sugimoto, Y.; Morimoto, K.; Negishi, M.; Narumiya, S.; Ichikawa, A. *FEBS Lett.* **1995**, *372*, 151. (b) Regan, J. W.; Bailey, T. J.; Pepperl, D. J.; Pierce, K. L.; Bogardus, A. M.; Donello, J. E.; Fairbairn, C. E.; Kedzie, K. M.; Woodward, D. F.; Gil, D. W. *Mol. Pharmacol.* **1994**, *46*, 213.
- 3. Narumiya, S.; Sugimoto, Y.; Ushikubi, F. *Physiol. Rev.* **1999**, *79*, 1193.
- 4. Katsuyama, M.; Ikegami, R.; Karahashi, H.; Amano, F.;

- Sugimoto, Y.; Ichikawa, A. Biochem. Biophys. Res. Commun. 1998, 251, 727.
- 5. Kasugai, S.; Oida, S.; Iimura, I.; Arai, N.; Takeda, K.; Ohya, K.; Sasaki, S. *Bone* 1995, 17, 1.
- 6. Tani, K.; Naganawa, A.; Ishida, A.; Sagawa, K.; Harada, H.; Ogawa, M.; Maruyama, T.; Ohuchida, S.; Nakai, H.; Kondo, K.; Toda, M. *Bioorg. Med. Chem.* (this issue).
- 7. Okamoto, S.; Katayama, S.; Ono, N.; Sato, F. Tetrahedron: Asymmetry 1992, 3, 1525.
- 8. Newton, R. W.; Raynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. *Tetrahedron Lett.* **1979**, *41*, 3981.
- 9. Buchmann, B.; Skuballa, W.; Vorbruggen, H. Tetrahedron Lett. 1990, 31, 3425.
- Arróniz, C. E.; Gallina, J.; Martínez, E.; Muchowski,
 M.; Velarde, E.; Rooks, W. H. *Prostaglandins* 1978, 16, 47.
 Drugs Future 1986, 11, 660
- 12. Thierauch, K. H.; Stürzebecher, C.St.; Schillinger, E.; Rehwinkel, H.; Radüchel, B.; Skuballa, W.; Vorbrüggen, H. *Prostaglandins* **1988**, *35*, 855.
- 13. Nials, A. T.; Vardey, C. J.; Denyer, L. H.; Thomas, M.; Sparrow, S. J.; Shepherd, G. D.; Coleman, R. A. *Cardiovas-cular Drug Review* **1993**, *11*, 165.
- 14. Gardiner, P. J. Br. J. Pharmac. 1986, 87, 45.
- 15. Kato, K.; Kawashima, T.; Ishida, M.; Higashi, Y.; Nakanishi, S.; Oshio, Y.; Kuroda, K.; Shu, B.; Matsumoto, K.; Sakai, T.; Tsuda, T. *Acta. Obst. Gynaec. Jpn.* **1973**, *25*, 476
- 16. Caldeyro-Barcia, R.; Sica-Blanco, Y.; Poseiro, J. J.; González Panizza, V.; Méndez-Bauer, C.; Fielitz, C.; Alvarez, H.; Pose, S. V.; Hendricks, C. H. *J. Pharmacol. Exp. Ther.* **1957**, *121*, 18.
- 17. Kiriyama, M.; Ushikubi, F.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S. Br. J. Pharmac. 1997, 122, 217.